Semilinear Equations at Resonance with Non-symmetric Linear Part
نویسندگان
چکیده
منابع مشابه
Boundedness for Semilinear Duffing Equations at Resonance
In this paper, we prove the boundedness of all solutions for the equation x + n 2 x + φ(x) + g (x)q(t) = 0, where n ∈ N, q(t) = q(t + 2π), φ(x) and g(x) are bounded.
متن کاملUnbounded solutions of semilinear equations at resonance
We consider a forced harmonic oscillator at resonance with a nonlinear perturbation and obtain a sharp condition for the existence of unbounded motions. Such a condition is extended to the case of a semilinear vibrating string. AMS classification scheme numbers: 34C11, 35L05
متن کاملNontrivial solutions of elliptic semilinear equations at resonance
We find nontrivial solutions for semilinear boundary value problems having resonance both at zero and at infinity.
متن کاملNumerical Investigation of Krylov Subspace Methods for Solving Non-symmetric Systems of Linear Equations with Dominant Skew-symmetric Part
Numerical investigation of BiCG and GMRES methods for solving non-symmetric linear equation systems with dominant skew-symmetric part has been presented. Numerical experiments were carried out for the linear system arising from a 5-point central difference approximation of the two dimensional convection-diffusion problem with different velocity coefficients and small parameter at the higher der...
متن کاملSolutions of Semilinear Elliptic Equations with Asymptotic Linear Nonlinearity
In this paper, we consider some semilinear elliptic equations with asymptotic linear nonlinearity and show the existence, uniqueness, and asymptotic behavior of these solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1395